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AFROETASTIC PROBLEMS OF ATRPIANE DESIGN*

By E. G. Kussner
1. INTRODUCTION

For thirty years aeroelastic problems Iin alrplane design were )
practically unknown, owing to the low speed and rigid design method of
aircraft at that time. The filrst contributions to the unsteady lifting
surface theory appeared then, but they created only academic interest.
In the meantime, the speed of the airplanes contlnued to increase, while
the aerodynamic refinement dictated consistently thimmer and slenderer
wing configurations. As a result, the stliffness and the oscillation
phenomena connected with it have proved to be a limit of the technique
Just like the strength.

The aeroelastic processes are complicated becsuse they encompass
the whole ailrplane with its many parits and parameters. Aeroelasticity
1s in a stage of repid development of its theoretical and experimental
methods. Tts scope expands continuously. The development started with

studles on wing and aileron flutter. They were followed later by studles
on tall and tab flutter. At very hilgh speed, two new phenomens appeared,
fluttering of the skin and vibrations on approaching sonic velocity, which

are based on the instability of compression shocks at the curved sur-~

faces. An extreme case of flutter is the static instability at zero fre-

quency. Relevant also 1s the distortion of the wing by the aerodynamic
forces and the buckling and distortion of the skin. The reversal of the
alleron effect due to the wing distortion, while concerning only the
control, can be treated with the ssme formulas.

As regards the gust stress and the stability of flight motion, the
stiffness of the structural components also becomes so much more signi-
ficant as the wing shapes become thinner and slenderer. This is why
these zones are now included in aeroelasticity and are treated in part
by the methods developed for flutter. However, thelr discussion would
go beyond the confines of the present report. It also applies to the
aeroelastic problems of the rotating wings, the supersonic propellers,
and the fan and turbine blades. The literature on aeroelasticity since
1945 is too voluminous to be enumerated here. Some more recent compre-
hensive descriptions on airplane flutter are presented in the reports
by Kussner (ref. 1), Broadbent (ref. 2), Garrick (ref. 3), and

*upercelastische Probleme des Flugzeugbaus," Zeitschrift fir
Flugwissenschaften, 3. Jahrgang, Heft 1, Jan. 1955, pp. 1-18.

z:
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ven de Vooren (ref. 4), and in the introductory erticle by Scanlan and
Rosenbaun (ref. 5), which also contains further references.

2. INDICATTIONS OF.ATRPLANE VIBRATIONS (FLUTTER)

Flutter rests on the fact that the airplane as a vibratory system
absorbs energy from the airstream. This is so much more easily possible
as the speed of the airplane is greater. Both the damping energy and
the consumption energy from the airstream Increase with the flutter
amplitude. Depending upon which of these energies grows faster, it may
result in mild flutter with constant amplitude or vicious flutter with
amplitude increasing steadily to fallure.

Simplest of all are the natural vibrations of elastomechanical
systems in vacuum. If the system exists in an incompressible fluid with-
out moving in i1t, the Kelvin Impulses are additive; they are the mass
forces of the covibrating fluid masses. In the atmosphere, the Kelvin
impulses generally emount to only a few percent of the mass forces of the
airplane, hence do not change its vibratory behavior appreciably. Tor
these so-~called static vibrations, all points of the system pass almost
simultaneously through zero posltion. The nodal lines, that is, the loei
of disappearing vibration amplitude, are then so much more sharply pro-
nounced as the damping energy is less. It is customary, although not
exactly correct, to identify all static oscillation modes as "oscillations
with one degree of freedom."

The static oscillation modes are not capable, as a rule, of teking
energy from the airstream; they rather give off energy on the airstreanm,
hence are damped additionally. Absorption of energy is generally
possible only when a statlc oscillation mode is modified by the air forces
wvhich are additionally created on the oscillating wing during forwerd
motion. In that event, there is no longer a sharp nodal line; the new
oscillation has several degrees of freedom. However, it is possible that
certain static oscillation modes with one degree of freedom take up energy
from the alrstream In certaln speed ranges, hence flutter, especlally at
higher Mach numbers, and in the supersonic range. (Cf. Runyan (ref. 6),
Cunninghem (ref. T), Watkins (ref. 8), Weber and Ruppel (ref. 8a).)

To maintain a static oscillation mode with constent amplitude calls
for considerable energy input, even for an oscilleting system in vecuum.
The cause for 1t is the s0lid friction .of the many individual components
on each other, of which the airplane is riveted together, welded, or
bonded, as well as the friction of the control bearings end control cables.
S0l1d test rods have about 100 times lower damping than airplane wings of
the conventional type, but even in these the damping is probably produced
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by solid friction on microscopic cracks, grain boundaries, and such.
Thus surfece effects in the widest sense are involved. It is not likely
that these damping losses can be treated differentially; they can be
taken into account only integrelly snd in tlme-average for the whole
airplene. Since 1t 1s largely & solld friction that is involved, the
damping energy per cycle at forced vibrations of a certain mode and
smplitude in s wide range 1s nesrly independent of the oscillation fre-
quency. According to the Navier-Stokes theorem, fluid friction would
yleld damping proporticnal to frequency, hence must be excluded. Struc-
tural demping losses can be reliably determined only by measurements on
the finlshed sirplene. It is customary to allow for the damping energy
in the theoretical flutter formula by Introducing a constant damping
phase angle g; iIn all elastic stresses of & certain oscillation mode ij

for conventional airplanes, g; ranges from 0.0l to 0.10 (redians).

In still air, & linearly moving wing can exceed its critical speed
without fluttering; it is then Iin unstable equilibrium. Any shock
against such a wing initistes the entire natural frequency spectrum,
that is, with a certain distribution of amplitudes and phase angles.

But it does not signify that this distribution is sultable for absorbing
energy from the alrstream. When many shocks act on different parts of

the alrplene, however, 1t is increasingly possible that accidentally the
right distribution of the natural oscillation modes for absorbing energy
from the airstream and initisl flubtter is excited. This has been observed
in wind-tumnel tests with dynamically similsr models. Meny cases of flub~
ter were observed only In f£flight through gusty alr, whereby a great variety
of different shocks are exerted on the airplene. From these observations,
it follows that a certein minimum size of shock ls necessary to initiate
flutter. The extent to which thils rests on boundary-layer effects or
overcoming solid friction is an open questilon.

When the flutter of an alrplane or of a model wing ls recorded, the
record often reveals considerable departures from the harmonic or
"sinusoidal" vibration, which may be due to aerodynemic causes and to
the aforementioned solid friction. For example, there are complicated
control surface forms with internasl balance, for which the pressures
are not linesrly dependent on the control angle. Such controls may even
flutter in two different partially foreign frequencies simultaneously.
If the angle of attack of a wing at landing or pullout becomes so great
that the flow starts ‘o separate, there is no further eclear coordination
between angle of attack and pressure distrlbubtion in steady flow. A
rotery motion of the wing with one degree of freedom is then able to take
up energy from the alrstream. A periodic state of oseillation is sus-
tained, which, as & result of the complicated processes in the boundary
layer, is not linesar at breskwsy. This type of flutter has been known
for a long time and has lately been investigated by Halfmasn, Johnson,
and Haley (ref. 9).



b NACA T 1402

The sirplane englneer does not wish the fully developed flutter;
he would rather prevent it, though it may please some experimenters. He
wents to prove that all physically possible flutter phenomensa, and even
those with very low amplitude, lie outside the permissible speed of his
airplane design. For this purpose, the harmonic, linearized oscillation
theorem with simplified assumptions regarding air forces and structural
damping has been utilized successfully up to now; it is particularly
sultable for stability studies wilth arblirary smell smplitude., The first
attempt involved the problem of meking this simplest case of aeroelasticity
amenable to mathematical treatment and theoretical solution. This problem
is alresdy very difficult and only approximately solvable, as will be
shown In the following.

" 3. THEORY OF STATIC OSCILLATIONS

The airplane is replaced by an elastomechanical system of n point
masses and their connecting elastic members, which satisfy the classical
theory of elasticity. How this substitution 1s done wlll be disregarded
here. The deformations of such a replacement system under given small
forces and particularly the natural vibrations under the mass forces can
be computed by assuming infinitely small displacements, hence lineariza-
tion. A suitable ald for solving this linestlzed problem is in matrilx
form. Its applicaetion to real (self-adjoined) elgen-value problems in
physice end engineering 1s generslly known. Such e problem is involved
here.

A one-row matrix corresponds exactly to a vector Pi, &8 Bsquare
matrix to a tensor a4y, whereby the first subscript (1) is always

coordinsted to the rows, the second subscript (k) to the columns. In

the customary matrix calculus the subscripts are omitted. All these
subscriptless "direct” calculi, to which the vector and tensor analysis
themselves belong, are too little amenable to expansion; another drawback
is that the significance of many operation signs must be marked and the
sequence of the factors must not be changed. For the representation of
the deformstions of the lifting surface by polynomials or surface har-
monics as well as their numerical integration by means &f these functions,
the subscripts are. indispensable. Therefore we shall use subscripts,
apart from & temporary application of the vector analysis in the flow
theory. With respect to factors with identical subscripts or exponents
i, k, end 1, m is added up from 1 +to n, so far as the subscripts
are not bracketed. This is the only rule that needs to be followed.

Consider o plate-like wing of 1ittle thickness divided into n +tebles
ar “"torsion boxes" (cf. Willlems end Mech (ref. 10)); Py are the forces
and Ck the normal displacements of the n centers of gravity 1 =1

to n of these tebles. The matrix equations read then



NACA T 1402 . B 5
Pr=anby By = oy (1)
Cx = PaFy Byy =Py ' (2)

vhere Py, {x one-row metrices with n terms, a4 &nd by; square
matrices with n? terms; &y, 1s the stiffness matrix and by, the
deformation matrix; both are symmetric. By equations (1) and (2)

81xPx1 = Bi1

O when 1 21
=< (3)
1l wvhen 1 =1

The deformation matrix by; 1s obtained by solving the linear =
equation system (1) with respect to (y, when a;x 1s known. For

abbreviation

_ . -1 S |
b, =& 8y = by | (k)

For harmonic oscillation, the displacement of point k dis
e = Ay exp Jvt J={-1 - (5)

where A; denotes the complex oscillation amplitude and v the cyclic
frequency. The mass force is therefore o

P =M(xy —3

vt - (6)

1
=
=
™
K
0]
ks

with Mk

which a given continuous mass distribution may be best replaced by n
separate masses Mk in n given points, will be shown later. If

denoting the masses concentrated in point k. The manner by
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equilibrium 1s to exist, the sum of the forces in every point must
disappear. Multiplying equation (6) by bik/V2 glves, in the absence

of air forces, sccording to equations (2), (5), (6), the principal
equation _ -

My - (@), A =0 A=1/v2 - (1)

where
(B} 43 = Py1M(x) (8)

1s termed dynamic metrix end A = 1/v2 real eigen value. Equation (7)
contains an nth order algebraic equation for the n eigen values Ay

of the elastomechanic replacement system, the so-called secular equa-~
tion. It is obtained by equating to zero the denominator determinent
of the linear equation system (7). The secular equation is solved

either by using the Graeff process or, if n 1s great, by iteration.
First estimate an amplitude distribution A{ of the fundemental fre-

quency, then resolve the matrix eguation
N'AS = (M)A : (9)

with respect to A'. With this approximate value, compute a new ampli-

‘tude distribution AE and repeat the process until the values of A

and Ai[An do no longer veary. This gives the exact solution of the
fundamental frequency mode Ai(l) and of thg_eigen value kl. Now the

orthogonality condition - -
1

is valid for all harmonlc oscillations. -

From equations (7) and (10) follows then, by the seme iteration
process, the first harmonic oscillations of the system and so forth,
until all n eigen values A, and oscillation modes Ai(k) of the

system are obtained.
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The matrix method is partlicularly sultable with automatic electronic
computers; they can compute all the aforementioned matrix operations and
iterations very quickly. Even for n = (t}) = 55 points the operations
take only a few hours. This assures a wlde range of adaptation of the
replacement system to the actual airplane. The assumption of elastic
beams is no longer necessary; even plate-like systems can be treated.

As & rule, it is more convenilent to fix the stiffness matrix 4%

according to the design data, as Indieceted by Williams (ref, 10). The
elasticity theory of thin plates has been described by Reisener and
Stein (ref. 11), Fung (ref. 12), and Theodorides (ref. 13).

k. THEORY OF AIR FORCES OF THE OSCILIATING LIFTING SURFACE

To resolve aercelastic problems, a theory of unsteady surface is
necesgsayy. Some new advances in this direction are described in the
following based on references 1, 14, 15, and 16. Assuming perfect,
compressible fluid, the Euler equations for the velocity potential &
end pressure p vread

o
po a__.b"i':p "‘po (ll)

dp
=0 (12)

pocO%A3¢ +
Po 18 air demsity, e, velocity of sound in still air. Equation (12)

is applicable to very small pressure changes only. The velocity of the
fluid is v = AP. The substantial derivetion with respect to time is

& .3 '
at at“’A (13)
Let
C =v + 07

where v 1is the velocity of undisturbed flow aslong the positive x axis
and v' +the Interference flow. Because the flight speed v changes
rather slowly, as & rule, Vv = constant can be assumed. Then
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Ao = Ay (14)

In sercelastic problems 1t is sufficlent to know the corresponding
very small alr forces, since the aim is limited to exploration of the
start of the flutter mechanism in order to avold flutter. Hence, the
linesrization by assuming lu'l << v; the substantial derivetion 1s then

LSyl (15)

at ot Ax

Equetions (1) and (15) must be inserted in equations (11) and (12).
These equations and thelr solutions can be sxmplified by the following
substitutions -

r‘ﬁ

= XL = —dvlh = vh
g co T CYY-) * T - BR) (16)
X = 1Ix Y = -————IL——— y o % = —L__ Z (17)

X, Y, Z are ordinary Cartesian coordinates, w is the reduced fre~
quency, k +the number of waves; L is a characteristic length such
as half maximum wing chord, for example. £y

For harmonic oscillations

5 = Iv exp (vt + wp®x) e*(x,y,2) + Ivx (18)
p = ogv exp (dvt + wBx)p*(x,¥,2) + pg (29)
6 =L exp (vt + op2)E*(x,5) + Wo(x,y) (20)

With these new varlables, the Fuler equations far harmonic oscil-
lations become - = _ _

(UJ + ’éa_')o*(x,YJZ) + P*(X)Y:Z) =0 (21)
X _

L
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(A2 + nz)Q*(x,y,z) =0 (22)

Assume, for the present, an infinitely thin 1ifting surface, lying
approximately in the plene 2z = 0, hence as having only infinitely small
deflections . As boundary condition for the solution of equations (21)
and (22), there is the given downwash on the lifting surface

at
W = —
dt

e, ]

By equations (17), (18), (20), and (23) the reduced downwash on
the lifting surface ls

Wx'(x,'Y) = Q')ZG(XJY;O)

= -\7=ﬁll_ ” éﬁ %{-)C*(x,y) (2k)

The solutions of equetions (21) and (22) are usually represented
in integral form by means of Green's functions or difference kernmels K

o*(x,y,2) = /IKl(x - x',y - y',2z)p*(x',y’,+0)ax" dy! (25)

P*(XJ.V;Z) =ﬂK2(x -x',y - y‘,z)w*(x',y',o)dx' ay! (26)

The integrels are extended over the lifting surfaces; w*(x',y',0)
is the given reduced downwash on the 1lifting surface; p*(x',y',+0) is
the reduced pressure on the upper slde of the 1lifting surface. The
pressure p¥(x',y',-0) on the bottom side is inversely equel. The
Kernels K; and X, must satisfy the wave equation (22), as is resdily

apperent. Let F(x,¥,z) be a function that setisfies the wave equation

(A2 + KQ)F(X,;Y,Z) =0 . {27



10 NACA ™ 1hko02

and dissppears at infinity. By equation (17) the reduced coordinates
are ’

¥y = =Jy z = -3z real, if B:>l (28)
Then the Kernel Ky is generally given by

* 3
Kl(x,yiz) =f exp w(a - x)da Sz F(a,y,z) (29)

. N\
_ 2.8, 2
F(x,y,z>=exp(d'°‘ﬁ‘ ty ”), 1If pal (30)

a\/xg + y2 + 22

2 2
cos(n \/x2 -y -z )

B =

F(x,;?,'i) =

, f p>1 (31)

Tntegration of equations (30) and (31), with respect to y and ¥
from ~» to +x gilves the corresponding functions for plane flow

F(x,z) = - -% Ho(a) <n \[xz + 22>, if p<1 (32)
F(x,z) = -,jJ‘o(n\/xz - 22), if p>1 (33)

where Jg, Egy are cylindrical functions of zero order.

The surface equation

W2 - -F =0 o)

glves a cone envelope, the so-called Mach cone. As the roots in equa-
tions (31) and (33) must always remain real, the range of integration
of equation (25) in the supersonic range B > 1 must be limited to the
Mach cone. The Kernel K2 in the supersonic range is
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Ko (x,7,2) = GH A>°°S(“ vx2 - 57 - Eg) when B > 1

ox 1&2_?2_2-2

By equation (35), integration with respect to ¥ in plane flow

ox

Ko(x,%) = -,jé)+ i)J'O<K X2 - ‘2.'2) when B > 1

11

(35)

(36)

In the subsonic range g < 1, no simple formula in Cartesian coor-
dinates can be given for Kernel Xp, since it 1s impossible to satisfy

the Kutta wake condition in simple manner by this procedure.
linear orthogonal coordinates (u,v,w) must be Introduced, making the

1ifting surface itself a member of the family of orthogonal surfaces.

Let -

x = x(u,v,w) ¥ =yv,w) oz =z(g,v,w)

The suxiliary functions

U~

)
U
Er

o

+

o

I &Y
n

+

o/lov

oN
N
M,

=!
]
o
"
oo
¥|%
[\¥]
.
T
o/
g
n
+
P
Q/|o/
2§
[AV]

are defined.

For the three-axial ellipsoid with the helf axes

get, for example _
(B -] B - [0 - o

’ (1 - %) (o1 - ©3)

o B - 1) - o) - o
2 - ©p) (e - =3

o B0 - J[e - o b - o

N

(e3 - el)(e3 - e2J ]

(37)

(38)

(39)
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3e; = b2 + ¢ - 222
3en = e? + a2 . 2 (40)
3es = a2 + b2 - 2c?
U2 = E_;_(u) - p(v]] [g(u) - g(W)] "
V2 = [-P_(V) - 1_>(w)] [_E(v) - B(uj_-] (41)
W2 = ['_g(W) - p(w)] [:g(W) - g_(\ﬂ

P i1s the elliptic functlon of Weilerstrass. For the elllptic lifting

surface ¢ = 0. In orthogonel coordinates, wave equatlon (27) becomes

va[aiu(% Saﬁ) + 'a%<yuﬁ §;) + -a@;(gv- 5%)] + né F=0 (42)

In the cases involved here, ‘thls equation can be resolved by sepa-
ration of the variasbles -

F = Ry (u)8,(v,w) : (43)

The coordinate u = constant 1s to denote a convex surface, u =0
the lifting surface, upper and lower side, Rp(u) a retarded solution

of the wave equation (42), which disappears for u = «, The functions
Sn(v,w) are then so-called surface harmonics of the surface u = constantj

they satisfy the orthogonality relation

ﬂ%(v,w)%(v,w)v% dv dw = {O, if nem _()+J+)

The plane element is

o

v dw

dd=dxdy=—v——w—
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The integral can be extended over an srbitrery surface u = constant,
because U/VW 1s independent of wu, if the separation of the varlables
is possible. (Cf. eq. (41).) The surface coordinates v,w shall be
unequivoeal at least in certain ranges, as for example, the geographic
coordinates of the sphere in the ranges

0<v< 2, - %-< w < + %

The coordinate w = 0 denotes the plane of symmetry, normal to the
1ifting surface, parallel to the £light directlon, the equatorial plane,
the coordinaete u =v = 0 the leading edge and u =0, v =3x +the
trailing edge of the 1lifting surface. The elliptic coordinates given
in equation (39) still are ambiguous, but can be made unequivocal by
Introduction of the Welerstrass elliptic o functions.

Introducing, for abbreviation, the differential operators

3 . d
- 'a‘x—l
' (45)
dy oy’

Then there follows for the difference kermels X; and Ko of the
integrals (25), (26) the differential equations )

DyK = DyK = 0 (46)

To satisfy these conditions in curvilinear orthogonal coordinates
to0, the characteristic function

By (u).

G(u,v,w;v',w') = Z '_T'S‘ Sn(V)W)Sn(Vl:W') (7)

n=l

is introduced.

By definition this function satisfiles wave equation (42); 1t further
shall satlsfy the compatibility condition
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GV(O,m:,O;V',w' ), Gyr(u,v,w;0,0)

Gv(O, 0,0;v',w'), Gv' (u;V)W.;’f;O)

C1DxG = CoDyG = (48)

By approprilate normalization of G the consta.n'b_ Cl can be made

equal to unity. Then the Kernel KX, in the subsonic range B< 1 can
be represented as follows. (Cf. ref. 16.)

Kz = "Al{((” - E?F)G(H,VN;V',W‘) + W
Gyt (u,v,w;0,0) [GV(O,:I'(,O;V’,W' )T]_("-:CU) - G‘V(O;O)O;V' :W'ﬂ}
Ko = --Ag{( - %)G(u,v,w;v’,w') + ¢ (k9)
Gyt (u,v,wja,0) [GV-(O,II,O;V',W’) - GV<O,O,O;V',_YI4")T2(K,G)EI}
co-in /2 o : - - .
/ exp cux(u,o,o)c&‘,‘,.(u,o,o;:z,CJ)%EELgl—g-)l au
Ty () = —=oi/2 A (50)
fw-iﬂ/2 exp m(u,o,o)aw,(ﬁ;o,o;o,o)w du
_oo-{-ig‘t/e U(u,0,0)
f“'i’f/2 vZu,b,o)
exp ax(u,0,0)C 1 (u,7,0;0,0)———— du
-oo+j_1f/2 . U(u,0,0)
T2(K-:w) = (51)

wo170/2 - o
f exp (DX(U.,O,O)GW,(u,n«,osn,o)_uv(u 0 O) du
—°°+i3f/2 N U(u,o’o)

These equations hold for complex values of v, « ,_' & corresponding
to equation (16), i.e., for demped end amplified oscilletions also.

For 1lifting surfaces having s symmetry axis x = z:_= 0, for the
elliptic lifting surface, for example, Ty =-Tp. For the constants Ay

end Ay in equation (49), the following condition 1s applicable
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1 f ' d
—_—= dx dy lim — G(u,v,w;v',w!)
M o+ D 2=0, az_ |
(52)
U
= ﬁGu(O,v,w;v',w’) T v av
The integrand must be a Dirac & Tfunction
0, if vZv' or w2 w'
Gy (0, v,vesvt,wt) = ' (53)
w, If v =v' and w=w'

The conditions (52), (53) are such that the Kernel closely related
with Xo of the integral representation of the velocity potential as
function of the downwash always reproduces the given downwash on the
lifting surface. (Cf. ref. 15.) If both the leading and tralling edge
of the lifting surface are in uniform flow, we get

Ay = A (54)

hence zero 1lift in steady flow. Unsteady motion of lifting surface
creates additional members, among them the aforementioned Kelvin impulses,
which are acceleration forces of the comoving fluid. The solution (54%)

is termed Kelvin solution; in the 19th century it was regarded as a para-
dox of hydrodynemics. Experiments prove thet the Kelvin flow occurs at
the start of the motion, but is soon changed by the boundary layer of

the lifting surface. Kutta therefore made the phenomenological assumption
of smooth flowoff at the trailing edge, which leads to the constant

Ap =0 (55)

Kutta's solution (55) gives a 20- to 30-percent higher circulation
of the lifting surface; every steady and unsteady lifting surface theory
up to now rests on this solution. However, actually the traililing edge
is in a week flow, so that : :

AL > Ay >0 _ (56)

A second conditional equation for the constents Ay and Ap of
the general solution (49) might be gained either from an unsteady
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boundary-layer theory or from measurements of the unsteady pressure dis-
tribution. But the viscosity of the fluid discounted for the present
makes Iltself felt considerably in the final result.

5. TWO-DIMENSIONAL SOLUTIONS

The wave functions R, and Sp aré not well known except for the
case of the strip snd the circulasr plate.

For the strip, there are the coordinates of the ellipbic cylinder

X==coshucosv y=w z = ginh u 8in v (
5T)
U2 = V2 = ginh%u + sin®v, W =1 i
With these coordinates, the characteristic funetion for two-
dimensional flow reads
G(u;v,vl) = e 5 ’ sen(lc,v)sen(rc,v'), if ¥ >0 (58)
Nen( )'(R,O) B ]
1 cosh u « cos(v - v'!
G(w,v,v') = I ™ Cosh w o cosgv + v'g’ i k=0 (59)

Nep, and Se, are Mathieu functions in the Goldstein norm. Mclachlan

employs the paremeter ¢ = «2/4, The tables of the NBS (ref. 17) contain
these functions in a different norm with the parameter s = K2.

By equations (26), (50), and (58), the Kutta condition (55) gives the
reduced pressure. (Cf. ref. 1b.

—_.g. " ] 1 1 - l a
p*(u,v) = ﬁgf; w¥(0,v')sin v' dv { ( Yo av,)G(u,v v') +

Gv.(u,v,O)[év(O,ﬂ,v')T(n,w) - Gv(0,0,v{ﬂ} (60)
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w-dgfe —
exp (-o cosh u)Gyy1(u,0,n)du )
T(k,m) = ~oobizt /2 (61)

comiz /2
JF exp (- cosh u)Gyy1(u,0,0)du
~ootin /2

For x =0, i.e., for incompressible f£luld, the characteristic
function (59) is inserted in equation (60), so that the solution becomes,
term by term, the Kiissner~-Schwarz solution. (Cf. refs. 1 and 1k.) For
k = 0, there are large five-place tables of the aserodynamic coefficients
of the wing with sileron and teb on the assumption of the bent flet plate
as substitute system. (Cf. ref. 11.) For &k > O, Blanch and Fettis
(ref. 18), as well as Timman, ven de Vooren, and Greidanus (ref. 19), have
published five-place tables of coefficients for the flat plate and )
NLL Amsterdem (ref. 19a) also for the bent flat plate.

For small aspect-ratio wings; such as tapered delte wings, the speed
and pressure changes in x direction can be approximately disregarded
and so eliminate compliance with the flowoff condition. By utilizing
the orthogonal coordinstes

y = cosh u cos v z = sinh u sin v (62)

the Kernel Ké becomes then epproximately equal to the regular solution
of the wave eguation - ' Lo

K2(u:v;V’) = "'"21?&" G’(u:v:v') (63)

where G dis the function given in equation (58). Equation (63) holds
for all Mach numbers p. The 1lifting surface with its given downwash
distribution is divided in separate strips parallel to the y axis;
each strip being treated according to equations (26) and (63). Corre-
sponding solutions and tables have been computed by Merbt and Landehl
(ref. 20). How far the approximetion (63), which equation (46) does mno
longer satisfy, is practicable must be left to exact solutions.

6. THREE-DIMENSIONAL SOLUTIONS

For k = 0O, the wave equation reduces to Laplace's potential equa-
tion. For the ecircular plate, the solutions are spherical functions and
for the elliptic plate the Lam€ functions, so thet corresponding charac-
teristlic functions can be set up. For the circular plate, Schade (ref. 21)
computed solutions with spherical functions by a complicated procedure.
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When «k > 0, solutions for the circular plate can be computed with
spheroild functions developed by Melxmer. For the elliptic plate, which
is of greater aseronautlcal interest, the corresponding wave functions
are still lecking. '

Klissner (ref. 2la), Reissner (refs. 22 and 23), and Dengler-Golend
(ref. 2%a) have published approximate solutions patterned after Prandtl's
vortex fllement theory for high aspect-ratlio wings. The closed solution
of the two-dimensional problem of alrfolil theory is assumed known and a
correction of this solution is computed by resolving one or more linear
integral equations. When the Wronsky determinant of the cylindricel
functions is taken into consideration, the theories of Kussner (ref. 2la)
and Reissner (ref. 22) are ldenticel in every respect. For Incompressible
fluid & = O, the method 1s tested. But for «k >0 It is very complicated
and has not been carried through mumerically up to now. Compressibility
effects, in aeroelastic problems, do not make themselves felt appreciably
until B > 0.7 (ref. 3). This 1s the reason for the practical results
obtained thus far with the wing-flutter theory at the pressures in the
range 0 < B < 0.7 computed for k = 0.

In the supersonic range B > 1, the Kernel Ko is known in the simple
form (egs. (35) and (36)); hence the meny tables of the aerodynemic coef-
ficients for plane flow available now (ef. Weber, refs. 23b and 5), as well
as three-dimensional solutions for rectangular, -triangular, snd swept-
wing configurations. (Cf. Watkine (ref. 8); Lomax, Heaslet, and Fuller
(ref. 24); Nelson (ref. 25); Watkins and Bermen (ref. 26); Miles (ref. 27);
Walsh, Zartarien, snd Voss (ref. 27a).) If the flutter study involves
thin plates - a problem particulsrly posed In the supersonic range - the
integrations of equations (26) and (35) must be made from case to case,
corresponding to the wing contour and the number of points of the elasto-
mechanical deformation metrix. This is apperent from the flutter theory
developed further on. Solutions for B = 1 are most easily obtained from
the supersonic solution by the boundary transition B—1l. (Cf. refs. 28,
29, and 30.)

7. IMPROVEMENT AND EXPERIMENTAL CHECK OF THEORY

In incompressible fluid (k = 0) and two-dimensionel flow, profiles
of finite thickness can be treated as unsteady by the conventional methods
of mapping (refs. 31 and 32). Numerical solubions for small oscillstions
heve been computed by Couchet (ref. 33). The hope of obtaining aerody-
nanic forces that are in better agreement with experiments has not been
fulfilled at all, or only in & small part. (Cf. ref. 34.) In fact, if
a frictionless airfoil theory is to be maintained at all, 1t seems
edvisable to relinqulsh the Kutta condition. A possible improvement of
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theory by the general solution (49) with the phenomenological con-
stent A,f/A; has been pointed out previously.

Drescher (ref. 35) measured the pressure distribution of an oscil-
lating wing with control surface in plane flow in the weter tunnel and
compared it with 1ifting surface theory et & = 0. The amount and the
phase angle of the differences vary very little in the reduced frequencies
range o = 0 to 2.5; this mesns that the differences correspond to those
in steady flow. Similar results for total 1lift and moment of a rigid .
oscillating airfoll have been obtained by Greildanus, van de Vooren, and
Bergh (ref. 36) in wind-tunnel tests. The Kelvin impulses were measured
at v = 0; they are in fairly exact agreement with theory, up to a small
additional demping portion. Dirr (refs. 34 and 37) studied the flubtter
of a wing with and without aileron in plane flow in the wind tunnel and
found agreement in several cases between computed and measured critical
speeds after multiplying the theoreticel pressures by the reduction
factor 1 = 0.7. However, this agreement 1is contingent upon the choice
of mean camber line used as theoretical basis for the aileron with
Internal balance. The experimental findings may be atiributable to
profile shepe effectr or to boundary-leyer effects. A new theory which
accounts for both is therefore deslrsble. . )

8. MATRIX THEORY OF WING FLUTTER

The earlier flutter theory has been described in several compre-
hensive reports (refs. 1, 4 and 5); they chlefly rest on the replacement
of the elesto-mechanical system of the wing by an elastic beam and on
the sssumption of plene flow past the individusl wing sections. Tt
results In a system of linesr differentlal equations that can be solved
with any desired degree of accuracy by iteration. These simplifying
assumptions suggested themselves as a result of the wing design of the
time on the one hand and the absence of large anelog computers on the
other. The demands of flutter theory are one of the driving forces in
the evolution of the first automatic computers in Germany and the U.S.A.,
of which a considerable number is now available. This circumstance has
led to a marked improvement of the elasto-mechanical substitution system
and of the theory of natural oscillations of the sirplsne. And here is
where the metrix calculation is particularly sulted. The first step
that must be taken is to improve the serodynamic principles of the flutter
theory. The aerodynamic forces which must be inserted in the principal
equation (7) in order to be sble to resolve aeroelastic problems, nmust
also be represented in matrix form. This is thearetically possible, as
soon as the Kernel K, in equation (26) is kmown.
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To this end, the deflection of the 1lifting surface must be repre-
sented In appropriate menner. Assume a glven class of functions

F(x,y; r,s) (6%)

which are regular in the range of the lifting surface, i.e., finite,
continuous and differentisble; x and ¥y are the reduced coordinates
introduced in equation (17); r and 8 are Integral parameters, starting
wlth r = s = 0. The reduced displacement {%* of the 1lifting surface

is developed with respect to a series of functlons F by means of the
formula

*(x,y) = F(x,7571,851)8nd¥s 0S vy +o1<m (65)

;; are the given displacements in n = (m Z i) chosen points (xk,yk)
of the lifting surfasce. The functions F and the point coordinates are
50 chosen that their determinant '

>0 (65a.)

det IF (xk,yk;ri,si) 2

By equation (65), the insertion of +the coordinates x = X3, ¥ =¥
gives the relation .

F(x1,¥73%1s81) 81k = O1%

end with the abbreviations set up in equations (3) and (4) the matrix
gik = F(xk’yk;ri,siﬂ -l (66)

The representations (65) end (66) are exact, when the function {¥*(x,y)
belongs to class (6h) and of lower than mth order; otherwise, it is
approximately velid. When the lifting surface displacement (¥ contains
8 discontinuity due to a bend in the control surfaece, two separate rela-
tions must be established and then later combined along the control
surface axis.
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Integration of equation (65) with respect to the 1lifting surface
glves the well known numerical Integration formula -

ﬂc*(x,y)u dy = e b* (x,¥% ) = & b% (67)

wilth the weight factors

ax = &5y ﬂF(x:y;rirsi)& dy (68)

When f(x,y) = t*(x,y) 1s an arbitrary function of the class (64)
and of lower than mth order, equation (67) is exactly valid, otherwise
approximately, the error can be computed by Mises' method (ref. 38).

In numerical integrations polynomials, i.e., linear forms of the
function

F(x,y5r,8) = xy° OSr+s<m (69)

are generally employed. When the 1lifting surface u =0 is glven in
curvilinear orthogonal coordinetes, it is, however, more asdventageous to
utilize linear forms of the funetion class .

F (X,¥57y,8g) = U(0,v,w)Sk(v,w) ('70)

in which S, are the previously introduced surface harmonics. These
functions too are regular in the entire lifting surface range.

Assume an erbiltrary integrable mass distribution mn(x,y) over the
lifting surface. This 1s to be replaced by n single masses M in

the points (xk,yk) In such a way that the total messes, static moments,

moments of inertia, ete. of both distributions correspond. Thls condi-~
tion 1s met when ol

MkF(xk,yk;ri,si) =ﬁF(x,y;ri,si)m(x,y)w dy (71)
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Mg = 81x ij (xs7571,84) m(x,y)ax dy (72)

Equation (72) is similar to equation (68). In contrast to the
aforementioned function f(x,y) which must be regular, function m(x,y)
in equations (71) and (72) may also contain integrable singularities
(single masses). These integrals asre called Stieltjes integrels. When
the reduced coordinstes equation (17) are used, the right-hend side of

equation (72) must be multiplied by IZ[\/1 - p2, in order to obtain
physicel masses on the left.

The same procedure 1ls used for the replacement of the pressure
distribution by n single forces. Assuming an aerodynemic replacement
force of

P = exp (vt + w8Bx(y))PE (73)
equations (19), (72), and (73) glve the reduced replacement force
vl - ' 5
% = %L_e gik_/]F (x,v57r1,81) 0% (x,5, + 0)ax dy (7h)
1-8 _

Insertion of equetions (2k), (26), and (65) in equation (74) gilves

pov2L2 2 2 ’ :
P}-); = 1 - 32 gikhj_'l,glmg?ﬁ =T 2 szgz (75) o
h = Eff X,¥5 i,s )d.x dy Xh[/.’(d) + —X—') ’y ’rz’s )dxl dy-l
Kg(x_ - x',y - y',0) _ . (76)

The factor 2 in equations (74) and (76) i1s based on the fact that
the integration covers only the upper side (z = +0) of the lifting surface,
while the pressures on both sides of the lifting surface are inversely
equal., In the supersonic range B8 > 1, the Kernel Ké is alweys known

and given by equations (35) and (36) in certesian coordinates x and y.
Therefore, it is best to use polymomials in x and y as development
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functions. (Cf. eq. (69).) TIn the subsonic range $ < 1, the problem
is more difficult. Curvilinear orthogonal coordinates (57) function
class (70) must be used as development functions. Partlael integration
of equation (76) gives the aerodynamic matrix

/fsi(v,w)l av aw X[[SZ(V',W )-—— dv! dw' X

L (m

Due to the insertion of the Kernel Ko according to equation (49) in
equation (77), all integrations can be carried out in closed form by
means of the orthogonality relations (+). The integrations are extended
over the entire orthogonal surface u = 0, l.e., both sides of the lifting
surface. Thus, matrix h;; can be computed from & limited number of ky

values, according to equation (#4), and of the wave function values
appearing in equation (49). In the case of & hinged aileron, hence unsteady
deflection €%, the integrations over both areas of the lifting surface
must be made separately. Equation (44) is then no longer appliceble and
infinite series are obtained. Only in plane flow can those integrations

be carried out in closed form.

If the Kernel X, 1s not known, the integrodifferential equation

|

W*(X:Y) —\/i—_——@-) + %{)C*(X,Y)
1- p2

lim —fle(x - x',y - y',2)p¥(x,y, + O)ax' dy*  (78)
z=0 OZ

following from equations (24) and (25), must be resolved, where K, is
given by equations (29) and (30)

Integrating while using equation (27) gives

t*(x,y) =_/]Ko(x - x',y - y)p*(x',yt, + 0)ax! ay! (79)
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da' X

fa! daexpw(a-x)<n2 82 BE\exp(,jn\/2+y2)
” W e

(80)

development function F and equations (74), (75), and (79) would +then
Immediately yield the aerodynaemic matrix

= QE{0<xk - Xz’yk - yz)i\ -

But Kernel Kp(x,y) has a singularity et x =y = O. The reverse

problem must therefore be solved some other way B which cammot be
discussed here.

The sum of the reduced mass and aerodynamic forces is, according
to equations (6), (23), (73), and (75)

v2L2 -

On the other hand, elasto-mechanlcally, ‘we get by equations (2),
(23), and (73)

L§§ = bikPE - (82)

iy = b(ik)exp a)Bg(xk - xi) (83)

Multiplying equation (81) by b:;_k/veL and :Lnsertin_Q it in equa-
tion (82) gives the principal equation of the flutter th;aory

M*{ + EbizM(Z) + pb:;_kaz]g'?’f =0 (8%)
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PV L Pg 2
b= = - (1 - 82 (85)
v3(1 - p2) a? .

The paremeter | has the dimension of a mass. When p = 0, equa-
tion (84%) becomes equation (7). Equation (84) is the desired matrix
equation for defining the n eigen values - Ay, of the oscillaeting wing.

9. ANATYTICAL SOLUTION METHOD

The bracketed matrices in equation (84) can be computed for given
values of & o and are complex. Hence, It seems logical to
coneider equation (84) as a complex eigen-value problem, whereby the
gserodynamic matrix 1s not self-asdjoined. Prior to 1943, little was known
sbout complex eigen-value problems. Since then, Wielandt (ref. 39) has
developed eppropriate iteration methods for calculating complex elgen
values and proved their convergence. Recently, Gossard (ref. 40) applied
this procedure and proved it again.

Equetion (84%) thus ylelds a set of complex eigen values whose
azimuth angle is the assumedly known damping phase angle g;

=+

86
2 (886)

Mo Njewm dey N =

These physical solutions are obteined from the group of mathematical
solutions by graphical interpolation, }\i(n ,) being plotted in the

complex numerical plane. The critical speed vy 1s computed from the
obtained values v3, &, and , according to equation (16). The check
on whether :

ﬁ=§l=— (e
0

conforms with the assumption is made by graphical method. And, since
the airplane is to fly at different altitudes, the sir density 'p-o must

be varied too.

The conditions (86) and (87) confine the physically possible solutions

materially, so that often no physical solution is found in the explored
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speed range. This is exactly what the aeronsutical engineer wants. To
be on the safe side, however, he would still have to vary the most impor-
tant parameters of the airplane with their limits of error and menufac-
turing tolerances. This can.be done by one of the customary dilsturbance
calculations, without having to repeat the whole calculation (ref. k4).

It might be noted that Wielandt (ref. 41) has developed mathematical
methods for estimating the upper and lower limits of the complex eigen
values Aj, when the principal equation (84) is given. When these limits
meet the technicel requirements, the solution of the characteristic value
problem can be omitted.

Bearing in mind the structurel damping, the reduced elastlc force
follows from equations (1), (20), and (73) at

P = e o@[aP(a - x) + de] = Byelx (@)

The sum of the elastic, mass and aerodynemic forces 1s then,
according to equations (81) and (88)

2+ 2 -
Lal (% - IM, \v* —————EDOVL ¥ = (89)
aik.c'i T )Y Ck + 1-~-8 Hklgl = 2

Flutter is generslly initiated by small external forces. Hence,
the thought lies close to introduce a given periodic outside force Qﬁ

as interference function in equation (83), such as Q = Q{, for example,

or a force distribution representing a given "sinusoidal"” gust. The
amplitudes Qi(v,v) of the lifting surfaces can then be computed as

functlons of the frequency and speed from the inhomogeneous equation
system (89).

Neer the critical flight attitude, the amplitudes Increase consid-
erably and become infinite in the flutter range by reason of the disap-
pearance of the denominator determinant of equation (89). This method
also affords a complete survey on the flubtter behavior of an airplane.
This method is especially favored in Russia. It may also be used for
investigating the effect of atmospherilc turbulence, by analyzing it
harmonically and posting it on the right-hand side of eguation (89).

The harmonic components of the elastic stresses calculated from the wing
deflections are statistically superposed. -

The six degrees of freedom of the aircraft motion és a rigid body as
well as the free control surface notetions must also be borne in mind in
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every flutter study. Up to now, the theory of path motions of airplanes
rested on these degrees of freedom. However, no sharp boundaries between
flight stability, flutter, and gust stresses can be drawn; there are meny
transition modes. Collar (ref. 42) said: "In short, it is evident that
we are no longer dealing with a series of subjects each in its own water-
tight compartment: +there is a definite coslescence of the subjects into
an integrated whole, which may be defined as the dynamics of a deformsable
airplane. And we are faced with the question: what are to be our methods
of treatment of this unified problem?"”

Rea (ref. 43) demonstrated how by Iaplescian trensform all three
domains of aseroelasticity can be Jjointly treated (Transfer Function-
Fourier Method). The transfer function of a dynsmic system transforms
the Input into output, for example, control hinge moment into tail sur-
face force. For the numerical solutlion of these and, in fact, of all
linearized problems, the use of electrical analogies is recommended.
They rest on the formal similarity of the differential equations of an
ordinary linear mechanical system with a finite number of degrees of
freedom (Lagrange's equations) and the differentlal equations of a linear
electric network (Kirchhoff's law). The displacements represent the
electriec voltages, the generalized forces, and the electric currents.
For conservative systems, the analogous electrical network conteins only
pasglve elements, resistance, capacitance, inductence, and transformer.
When air forces are involved too, amplifiers must be included.

The solution, in characteristic value problems of flubtter theory,
is obtained by connecting periodic interference currents % with the

network and measuring the currents and voltages. One particular advan-
tage of such anslogy devices 1s that structurael changes in the network
can be easily copiled in the design stage of the aircraft. The error of
measurement Increases nesarly wilth the root of the degrees of freedom,
therefore, 1s still comnservative even for 100 degrees of freedom. McNeal,
McCann, and Wilts (ref. 4h4t) described the analogy setup developed at the
California Imnstitute of Technology which carried out flutter calculations
with 7O degrees of freedom.

The stability of the solutions of linear differentisl equations is
defined by Routh's criterion; but it becomes inconvenilent with a large
nunber of degrees of freedom. Nyquist, therefore, subjected the differ-
ential equations to a Leplacian trensform and developed its characteristic
equation in powers of Iaplacian operators. The stability of the solutions
of the particular system can then be proved by & simple theoretical fimc-
tion operation. Nyquilst's method has been used for some time in electro=~
'tzechni)is, and has been applied also to flutter calculations by Dugundji

ref. 45).
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10. FLUTTER OF SKIN PANELS (COVERING)

The covering of an alrplane usuelly consists of thin sheet panels
attached to frames; they can perform aeroelastic oscillations even on
a rigld frame. To the extent that the problem can be linesrized and the
wing covering is approximately flat, this type of flutter could also be
treated by the matrix method developed in section 8. However, this would
require the assumptlon of & rather large number of degrees of freedom
(points), and so the solution of very great matrices.

For this reason we examine = simpler, ideal case, namely, the infi-
nitely flat thin elastic plate, pin supported on an infinite rectengular
lattice framework with the spacings 11 and 12. The mean normal

stresses Ty/h and Tp/h and the plate shearing stress S/h may be
regarded as constant for very small deflections €, even if the latbtice
framework is immoveble. The plate 1s of h thickness, and M 1s the
mess per unit area. The linear differential equation (ref. 46) for ¢

reads then
3% 3%

37§+T—-+2s—-—+T + M —= = -TI(x,7,%) (0)
Lo oy 2R a2 7

X, ¥y, and 2z are ordinary cartesian coordinates; z and { are counted
positive upwards. Compressive stresses are ¢computed positive. The
bending stiffness

mG  h ;
—T g e ig : (91)

1s essumed complex for perilodic processes, to allow for structural
damping. The pressure Jump on the plate 1is

0 =

II(x,y,t) = (x5, + 0,%) - P(x,y, = 0,8) + ) 8(x - nly)an(y,t) +

nA=~®

; B(y - mlp)Qy(x,t) (92)
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D = serodynamic pressure, 5(x) Dirac's & function, Qu(x,t) the
normal force per unit length exerted on the mth bulkhead (Longitudinal
member) of the lattice framework. In the subsequently involved periodic
solutions, the functions Q4 and Qp repeat after each two steps.

Equation (90) is solved by the substitution

[s] 22

¢ (x,y,%) = ReRe! Z A exp (ivt + Irk x + ,jsk2y> (%)

rs
=00 =0

12 = 13 = 32 = -1

A, s&re hypercomplex constants; in addition

k = :c/z_l ks =1x/lp

Continual support of the plate on the lattice frame 1s contingent
upon

;;A&,zs =§L: ; Aopia,08 = ©
(S4)

0 oo (o] (o]
;j 2; Aoy pet1 =§ Z; Aoy, 0841 = ©

The individual members of (93) represent traveling waves moving In
x direction at speed -v/rky. The air strikes the upper side of the
Plate at constant speed v =along the positive x axis, while still ailr
prevells at the lower side. A new system of coordinates

X = e s 7 =
X=xt+g= Yoy =z (95)
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that moves along with the traveling wave »r 1is introduced., In the over-
scored coordinate system, a steady flow problem exists, the upper side of
the statle wave r 1s in streamwise flow at speed

= v
VO— v+ I‘kl
the lower side at speed . _ Z
— Y -
Vy = =
U rky

 For &k =0, equation (22) gives the differential equéfion of the velocity
potential

—A\2 82 32 o
1 —Z—g-?\:x_e+ay2+ai%¢(x;5r;z) =0 (96)

from equation (23) follows the boundary condition for Z =0
w(X,¥) = 0z(%,7,0) = Hx(X,7) (97)
By equations (11) and (15), the pressure on the upper—side of the plate is
p(X,¥, + 0) = -p Wx(X,¥, + 0) + pg (8)
The psrticular deflection of the plate is assumed es
¢ (%,7) = exp (irk X + Jskoy) (99)

and the corresponding velocity potential for z 20 as

== 1Brg o _—_"22 2 '
o(%,7,%) = poTrky exp [irk X + Jek §y - Z\Jﬁ? - §§>r kT + 8 kg (100)




NACA ™ 1402 . 31

As a result of equations (96) to (100), the particular pressure is then

p(X,F, + 0) = Byg (V)exp (1xiy T + I5k7) (201)
with
[} 17"2r2k2 .
B_(7) = - Y (o2
\//(% - %g)rzkl + 52k2 : | -
when the radicend is >0, and
p Vx| vr k%
B (V) = - ™1 (103)

=) . .
\/«% - gg)rzki + szkg

Putting equations (92), (93), (95), (99), and (101) in equation (90),
multiplying by

when the radicand is <O.

exp (~irk x - Jskzy)

and Integrating with respect to X,y from -« to +4x, ylelds the
coefficients

= LEO + (-1)%0q + '(-1)502] (M) - (104)
N, = (rzkl ¥ sekz)aB - 26T - 2rskg kS -

S2k%T2 + Ersé;'+ §§£> + Brséé%f) (105)

The hypercomplex constants determine the type of the solutions.
Corresponding to the support conditione (9%), there are four different
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types of form changes, hence four types of flutter. bnly the straight
oscillation modes are considered here. By equations (9%) and (1O%)

I NCSSLELI 9

Energy absorption from the sirstream and fluttefﬂis possible only
when at least one of the coefficients B,y becomes imaginary. (ce

eq. (103).) Equation (106) then becomes complex, from which follow two real
equations for the determination of the eigen values v and v. For

v = g = 0, only static instabllity i1s possible in the subsonic range,

but no flutter. By equetion (102) all coefficients B,.; are then real,

hence the sole result is a real equation (106) for computing the eritical
speed V. When at least two functions N,.g of the same parity disappesr

simultaneously, equation (106) itself is eatisfied, since o - » can be
any number.

Hedgepeth, Budiasnsky, and Leonard (ref. 47) developed a representa-
tive theory for plane flow (k2 = O) and computed the sgtability range of
the fundementel oscillations r = -2,0,2 for a large number of paremetric
values on the basis of the Nyquist dlagram (ref. 45). They found that
structural damping g could lower the stabllity range under certein
conditions. The limitation to fundamental oscilllatlons for reasons of
simplicity 1s a first approximation. The support reactions of the lattice
frame cause disconbtinulities of the hiligher derivatives of the deformation
area ¢ (x,y,t), to whose representation Fourler series with infinitely

many terms corresponding to (93) are required theoretically. Since N.s

is & 4th order polynomisl in r and s, the series (106) converge falrly
repidly. '

When externsl air forces T > 0 act on the plate or it is heated .
by skin friction, the plate can buckle statlcally even without alr forces.
By equation (90) the differential equation of the static plate (ref. L6)
reads

s ¢y 25 4 o5 35 4, 28

— + 28—+ Tp —= =0 (107)
ax® oxdy 2 %2



NACA ™ 1402 33

Inserting equation (93) in (107) gives
A [( + 32k2)25 - vAET - 2rskyksS - sak%Té] =0 (108)

Finite emplitudes Apg &are possible only when the bracketed term
in equation (108) disappears, i.e., when Ty and T, have a critical

magnitude. If these Increase gradually, buckling will follow at the
smallest possible values of r and s, and a corresponding static wave
field will be the result. Visuslizing this wave field in a flow along

x &t speed v, its steady pressure distributilon can be computed by
equation (101), where X =x, Vv =v, Vv = 0. The aerodynamic forces
continue to deform the given wavy plate until & new state of equilibrium
is reached or, failing that, until the waves change into opposite posi-
tion ((— -£). This loss of static steblility is a supersonic phenomenon
which comes into being through the change in sign of the radicend in
equation (103). TIn the subsonic range the aerodynsmic forces generally
have a stabilizing effect on a static wave field, with exception of the
aforementioned case of static Instability, where a monotonic increase in
wave height occurs umtil the linesrized formulas (90) becomes inspplicsble.

Fung (ref. 48) investigated the static stability of a sinusoidal
half wave in two-dimensional supersonic flow (k2 =0, v> co); however,

his theory is identical with that of an Infinlte wave field. By assuming
Immovable supports and finite small amplitude, the problem becomes
nonlinear with respect to the deflections, but stlll linear enocugh epprox-
imately as far as aserodynamic pressure 1is concerned. The critical speed
of static instability is so much lower as the initisl amplitude of the
wave field is lower. Because the opposite position ((—> -€) of the
changed panel field has Jjust as little stability, a complicated perlodic
process develops which is not harmonie and could not be calculated up

toc now. Such & process would lead to a rapid destruction of the shell
(or skin) as observed on Germen V-2 rockets. Skin buckling on supersonic
alrplanes in all flight attitudes should therefore be prevented by =ppro-
priate design measures.

To the extent that the ideal case of the infinite plate with lattilce
frame investigated here 1s applicable to real alreraft, skin flutter can -
be considered as a typlcal supersonic phenomenon. Flutter processes can
occur only below the critical speed of static instability.
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11. STATIC OSCILIATION TEST

The sbatic oscillation test on alrplsnes is the oldest and most
extensively employed experimental method of aeroelasticity. Since
flubter occurs mostly near statlic oseclllation frequencies, the static
oscillation test originally served to detect oscillation modes suspected of
flutter, later on largely as experimental check of the design regulations I
and II as a safeguard against flutter. Owing to the complicated structure
of aircraft, there was no other possible way to meet these requirements.

The measured static oscillation modes. Fi(x,y) were utllized occe-

sionally as starting function for the flutter theory, 1.e., the wing
deflections { were represented as linear modes of Fi(x,y). The mass

distribution m(X,y) of the wing 1is comparatively easy to define from
the deslgn drawing, from which the substitute masses My iIn n selected

points can be computed by equation (72). After inserting Fi(xk,yk),
My, end the measured natural frequencies vy in equations (1), (5), and
(6), the stiffness matrix a4 can be computed without having to make

stiffness measurements or calculastions with their attendent sources of
errors and approximations. To be on the safe slde, every measured static
oscillation mode from the first to the nth should be introduced as degrees
of freedom, which appears possible by electronic computers. In order to
be able to carry out this procedure, the measured static oscillatlion modes
must, first, be corrected and orthogonalized (ref. 48e).

For the static osclllation tests, the readied alrplane is suspended
in a hanger from very soft springs or else mounted on a sultable elastic
base and excited in one or more points by oscilletors with slowly
increasing frequency. At the natural frequemcies vy, the ampli-
tudes Fi(P) are maximum. These can be measured or recorded successively

and thus glve a complete survey of the static oscllletion modes Fi(P)
of the sirplsne, P denoting any one point of the airplane.

The original oscillators were roteting unbalanced masses. But they
were later replaced by electrodynamic oscillsastors, which are more accurate
and easier to use. More recent oscillators are those developed by Herschel-
Schweizerhof (ref. 49) and compared in an article by de Vries (ref. 50).
Originally, the amplitudes were read from so-called oscillometers mounted
at several points of the ailrplane, which were replaced later on by
commercial electrical pickup and recording instruments (ref. 5). These
pickups are either accelerometers operatling wlth plezoelectric crystals,
strain gages, or acceleration-responsive electron tubes; or else they are
speedometers operating with Induction colls. Accelerstions and speeds
are changed to deflectlions by electrical integration switches. Direct
recording strain gages are suitable for elongation measurements.
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These electrical instruments speed up the natural oscillation mode
measurements, increese theilr accuracy, and make phase angle measuremerits
possible (ref. 51). Only the natural oscillation excited in resonance
has the phese position 'Vﬂ/2 + kit relative to excitation, while other
accidentally excited oscillations have the phase position ~0O + kx and
can be interpreted as dlsturbances and eliminated. The exact measurement
of the excitation energy also ensbles the damping phese angle g. To be

: <
determined when the generalized mass of the oscillating system
hy =y FE(P)m(P)
P

is known. This can be obtained by application of known additional masses
on the-oscillating system and by frequency measurements (refs. 52 and _52,8.) .

12. MODEL TESTS

When an experimental clarification of the most important sercelastic
problems is demanded before a new type of aircraft is finished, a dynam-
ically similar model of +the planned airplane can be bullt. Its purpcose
may be the determination of the static oscillations, and can be met by
the mathematical problem described in section 3. The outside of the
model does not have to be geometrically similar to the full-scale design;
the covering may be dispensed with under certain conditions.

But in wind-tunnel model tests for the determination of the critical
speed or the proof of flutter freedom, an externally geometrically and
internally dynemicelly similer model is necessary. This problem calls
for a model scale that is not too small and generally also a far-reaching
geometrical similarity of the internal construction. When compressibility
effects are involved, the ratio of the sonic velocities of the structural
material and of the flowing medlium must agree. TIn wind tunnels with air
medis this practically indicates aluminum as model materisl.

It is difficult to meet all these requirements. The first dynamically
similar models built in Germany were therefore still rather far from the
dynamical similarity with full-scale design. Substantial improvements
were attained by the tendency toward external and internal geome"liric simi-
larity with the use of adhesive plastics such as Vinldur and adhesive thin
aluminum sheets. They are avallable in the U.S.A. In finely gaged thick-
ness for model designs. Even small forming rollers are utilized for such
strips. Such mcdels can actuslly be regarded as minlature copies of full-
scale versions. Kinnaman (ref. 53) gives an insight into the model testing
technique of the Boeing Co., which prefers a cheaper wood construction,
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as was customsry in Germeny. Melzer (ref. 53a) glves an outline of the
laws of simllarilty and describes the technique of the Junkers Airplane Co.

However, it does not always call for & complete model. Experiments
with a half-span wing restrained at the root can be very informative, when,
say, the effect of individusl messes on the wing (engines, fuel tanks) on
the criltical speed is involved. Such simplified model tests have also
been used as experimental check on corresponding three-dimensionsl flutter
calculations, since the approximate assumptions, which must be introduced
in order to simplify the theoretical calculation, cen already be proved
on simplified systems (Runyan-Sewall (ref. 54), Woolston-Runyan (ref. 55),
Gayman (ref. 56), Tuovila, Baker snd Regler (ref. 56&) and Nelson and
Ralney (ref. 56b)).

Since dynamically similear models of a complete airplane must not be
too small, sufficiently great tunnels are required for thelr study, at
airspeeds ranging within the permlissible f£lying speeds of the full-scale
design. This would be necessary If compressibllity effects are to be
accounted for. In favorable climate the expensive big tunnel can be
replaced by a towing section in the open alr, whereby a vehilcle on rails,
propelled by rockets, carries the model. Entire tail surfaces have been
towed up to sonic velocity on such sleds, at the Edwards Alir Force Base
(U.S.A) and tested for flutter. A slight breeze, ground effect, and the
inevitable vibrations are less disturbing in such tests than in steady
profile measurements.

Flutter studies have also been made on dynamically similar models in
free flight (ref. 3). The models can be studied in diving flight or can
be equipped with thelr own rocket drive and launched seaward In flight
without return. The salient data are generally radioed to the ground
where they are recorded. Such free-flying models have been used repeatedly
in the U.S. for aeroelasticity problems as well as other important f£light
characteristics. Free-drop tests of models on which flutter begins
directly above sonic velocity have been described by Dat, Destruynder,
Loiseau, and Trubert (ref. 57) and compered with theoretical calculations.

13. FLIGHT TESTS AT FULL SCALE -

The flight safety of new airplane types must be proved by flight at
maximum speed. Then 1t-may happen thet the critilical speed is exceeded
without initiating flutter, due to an accidentally absent outside impulse.
On the other hand, sudden incipient flutter may lead to the destruction
of the airplane before the pilot has time to observe the particulars of
the event. Attempts have therefore been made to find some way by which
a dangerous flutter possibility, that escaped theoretical or experimental
detection, could still be spotted early enough in a flight test.

a

i ——
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In Germany ‘they mounted, for this purpose, oscillating masses on
levers into the wing, which were excited with slowly increasing frequency,
as In the static oscillation test. It was hoped that, at increasing
oscillation amplitudes with incressing flying speed, an epproach to the
critical flutter oscillation could be identified at the right time. This
1s correct in principle. But in the execution of the £light tests it is
very difficult and time-consuming to grade frequency and speed fine enough.
The rise in smplitude can therefore be so fast that it is too late for a
warning and the airplane crashes. However, favorable flutter modes whose
amplitudes in a given speed renge do not exceed s small, still nondangerous
amount have been detected by this method. These were carefully recorded
by £light tests, because they are sultable for checking theoretical methods
of calculations.

On airplanes with servocontrol, it is easier to impress a periodic
booster force on the control surface which is then trensformed into a
many times greater periodlc wing load distribution by aerodynamic trans-
formation. It 1s not difficult to install an additional corresponding
servocontrol for acceptance testing. Thls method has been used in the
U.S.A. Pepping (ref. 58) made an analytical study of wing flutter by
artificially excited control surface oscilllations. The flutter stability
can be determined from the initiated torque of the oscilllating control
surface per wnit of engle of rotation and observed periodically; when it
is zero, flutter condition is reached. This dangerous condition can be
avoided by Installing e hydraulic damper, or even more effectively, a
feedback coupling with the wing rotation in the servocontrol. This raises
the critical speed, and twekes it possible to drsw conclusions about the
critical speed which the alrceraft would have without stebllizing servo
mechanism from the measurements of the amplitudes and phase angles of the
excitation and the wing motion. When the rate of reactlion of the servo
mechanism is high enough, 1t cen be utilized to compensate any potential
flutter by eppropriate control motions with eppropriate feedback. IEven
gust stresses can be compensated this way. Admittedly, it may seem risky
to rely on the functloning of a sensitive servo mechanism for suppressing
flutter. But it can be used to good advantage, at least in high-speed
tests of a new alrplane type. o )

1k . PREVENTION OF FLUTTER BY DESIGN SPECIFICATIONS

In spite of the multitude of measurements of the stress frequency
distributions of airplanes in flight already avellable, it has seldom
been possible to use the physical process of the £light stress as basis
of the strength calculations of alrplanes. The strength of modern air-
craft in £flight rests rather on very primitive dimension~analytical
formulas and empirical values on conventilonal alrcraft compiled in the
design specifications for alrplanes.
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Therefore, it seemed Justifiable to follow a similar path in the
practical treatment of flutter iIn order to be able to bulld airplenes
with less flutter risk at tolerable expense. The avallable theoretical
and experimental ailds are Inadequate for a highly probable correct pre-
diction of flutter freedom. N

The convenient method developed in the early days of aviation, of
piloting the airplane by free-swinging control surface hinged at the wing
trailing edge, actually promoted flutter. The subsequent addition of
auxiliary control surfaces multiplied the difficulty. This fundemental
defect of all airplanes up to now can be largely removed by placing the
centroidal axis of the control surface and auxiliary control surface in
or directly before theilr axls of rotation. This way, the degrees of
freedom "bending or transletion of the wing" and "rotation of control
surface" are uncoupled at least as regards the mass forces and Kelvin's
impulses. The coupling of the degrees of freedom "wing rotation,"
"control surface rotation," and "auxiliary control surface rotation" is
reduced also, bubt not eliminated. Complete uncoupling of the degrees of
freedom 1s impossible for aerodynemic reasons.

The beneflcial effect of this mass balance of control surfaces 1s
volded when the control surface or auxlliary control surface with its
control cables has statlc netural oscillatlons which are in resonance
with those of the wing or with one another or approach it. The phase
angle between wing oscillation and control surface oscillation is then
very slight, i.e., variable by very slight outslde forces, so that it
can assume the value most favorable for energy absorption from the air-
stream and so lead to flutter. The second design rule therefore specifies
the avoldance of such neighboring frequencies, the permissible clearance
being defined by experiment and simplifled flutter calculations.

The stepwlse application of these comstruction rules for the design
of new aircraft and thelr check on the finished - alrplane by static oscil-
lation tests lowered the flutter probabllity considerably in Germany during
the 1933 to 194h period, where the effect of the individual measures could
be proved statistically. Teble I gives the cases of flutter investigated
in Germany according to the statistics of Kiissner (ref. 59) end Schwarzmenn
(ref. 60), for the periods a = 1925-~1933, b = 1934-1940, and
c = 1941-194k, Every spontaneously occurring case of flutter is counted
once, erbiltrarlly Inducible flutter altogether counted only once.

In these accidents more than 60 pilots and test engineers lost their
lives, 41 of them due to auxiliery control surface flutter. The surpris-
ingly high proportion of the auxiliary control surfaces is due to the fact
that these small but vital structural components and their control cebles
and supports were not always gilven the necessary care in the design and man-
ufacture. By themselves positively moving, sufficiently stiff auxiliary
control surfaces require no mass balance. But 1f they or their comnections
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are too weak or bresk, a new degree of freedom coupled by mass forces
is produced. Hence, the requirement for mass balance of auxiliary con-
trol surfeces in the German specifications.

Looking back, it is apparent that a careful application of the rules-

1. Displacement of axis of gravity in or directly before its axis of
rotation

2. Avoidance of frequencies spproaching static oscillations on wings,
control surfaces, and auxiliary control surfaces.

would have prevented most of these flutter incidents. Experience indi-
cates further that the permissible departures from these rules, i.e.,

the msnufacturing tolerances of production aircraft, must be very narrow.
Changes that may seem slight, even & new coat of paint ete., have caused
flutter on proved airplane types, more than once.

For 39 of the observed cases of flubtter calculations of the reduced
frequency

W= : (109)

are avallable, wvhere 21, 1s the mean wing chord of the wing of tail-

surface portion under maximum flutter. OFf particulsr interest are those
values which are only rarely exceeded. Teable IT represents the highest,
second hlghest, and third highest values. The highest values are of
lesser interest, since the individual values may contaln relatively great
observation errors. The values wy = 2.4 was observed fairly accurately

on a flying boat and represents a specilal case, because the aileron
fluttered with two degrees of freedom.

The physical basis for the empirical fact that certain meximum values
of the reduced frequency are rarely exceeded must be looked for in the
structural damping of the aircraft. The damping phase angle on conven-
tional slrcraft is. g; > 0.0l. To be able to absorb the corresponding

energy from the airstream requires certain minimum values of the wave
length of the oscillatory motion even for optimum phase angle of degrees
of freedom. On assuming that flutter frequency is always higher than
the fundamental frequency vy of the static oscillation, flutter should

be avoidable when

v, 2 — 110
L= I '

where a3 indicates one of the values of table II and vo the maximum
speed.
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Originally, 1t was attempted in Germeny to design airplanes according
to equation (110). Since the degrees of freedom "wing bending" and
"aileron rotation" have been decoupled since 1933 by the mass balance
recommended in the German deslgn specifications, the fundamental wing
rotation served as lowest flutter responsive static oscillation mode and
a corresponding torsional wing stiffness was demanded. But this require-
ment also proved itself as unnecessarily far-reaching for high-speed air-
craft on which the two aforementioned design rules had been fulfilled,
as numerous flutter calculations and model tests Indiceted. Auxillaxry
control surface flutter, which chiefly occurs with the degrees of freedom
"eontrol surface rotation" and "asuxilisry control surface rotation” could
not be prevented by wing stiffness no matter how great. For these reasons,
the overall frequency (110) was stricken from the German Specifications 1936
(ref. 61). TIn its place a theoretical or experimentel proof of flutter
freedom in the permissible flight range was demanded.  This was still
afflicted with many uncertainties at that time, but it exerted, at least,
an educational effect on the airplane buillder and clarified the influence
of the most importent flutter parameters.

Through this flutter proof, which extended to the static limiting
cases of wing deflection and reversal of control surface effect, the wing
stiffness and control surface stiffness were given a Jower limit.

It was found, repeatedly, that the stiffness prevailing for reasons
of strength itself was above this lower limit, hence, that the parti-
cular ailrplane was safe against flutter and static instability when it
satisfied the strength requirements and in addition satisfied the two
aforementioned design regulations. Wittmeyer (ref. 62) advocated a
corresponding airplane development while retaining certain baslc design
modes, which have proved themselves as flutter-safe in an extended series
of developments. By prescribing certain dimensionless parameters and
additional rules for the auxiliary control surfaces in the design of new
types of alrcraft, it should then be possible to attain flutter safety
by way of compliance with the strength requirements. However, such design
rules can be applicable only in a narrowly limited empirical range. When
advancing into higher speed ranges and with the use of very thin ailrfoils,
the matter becomes different. In section 9, there 1s glven a third design
rule vwhich prevents skin buckling in any operating condition; de Vries
(ref. 63) gives a critical summary of the design rules for the prevention
of flutter.

In the British Specifications and in those of the ICAO (International
Civil Aviation Organization (ref. 64h)), overall stiffness requirements
still take up a lot of space. It deals with recommendetions for conven-
tional aircraft, the compliance of which dispenses with a further flutter
proof. These requirements call for minimum values of the mean torsional
gtiffness of wing, fuselage, tail unit, and control surfaces, which depend
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upon the permissible maximum speed and on certain dimensions of these
structural components as follows

Q=

vp\-1/2
> 1% _vEps® < - —9> / D <o0.8 (111)
0 o

M is a moment, © +the angle of rotation during this moment st a certain
point, vp the maximum gliding speed at 30° path slope, B and S are
lengths; on the wing, for example

b = wing span from root to tip, t; the mean geometric chord. The
dimensionless constent k for the separate components is specified.
This formula (111) is epplied also to the flexural stiffness of the
fuselage snd the elevator overhang arm, with M and © defined
accordingly.

Equation (111) follows from the condition of the static torsionsl
stability of the wing by forming the mean value of the integral. For
this case, the Prandtl factor is correct. The constant X2 is then,
however, proportional to the resrward positlion of the elastic axisl
behind the neutral axis at quarter wing chord, but this rearward posi-
tlon is materially dependent upon the respective structural design of
the wing.

So far as the overall stiffnesses according to equation (111) are
to serve for the preventlion of flutter, they are supportable only by
equation (110) and table II, hence are disguised frequency requirements.
(Cf£. Collar, Broadbent, and Puttick (refs. 2 and 65).) But the static
oscillation frequencies vy of an airplane are dependent in a rather

complicated mamner upon the size and distribution of masses and stiffnesses.
To Justify overall stiffness formulas like equation (lll), the constructive
tolerance, conceded to the "conventional" sirplanes, would have to be very
narrow, i.e., they all would have to be prectically geometrically similar
and partilally dynamically similar, according to development series inves-
tigated by Wittmeyer (ref. 62). Or else the safety factor of the overall
stiffness would have to be very great, since the actual differences of the
airplenes of different manufacturers cause & correspondingly great varia-

tion of the declsive oscillation frequencies v;. e

lme calculating methods hitherto were based on the replacement of the
wing by an elastic beam with elastic axis. A plate-like wing has no
elastic axis.
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Shifting the gravity axis and the elastic axls of the wing in the
neutral axils, the degrees of freedom "wing bending" and "wing rotation"
in the subsonic range can be decoupled, thus avolding flutter. A mass-
balanced control surface does not change this action very much as a rule.
This mass balance of the wing has been used very rarely in the past.

But it might be that future aircraft with very thin wings will be subject
10 a requilrement regarding the position of the gravity axis of the wing,
in order to lower the required torslonal stiffness of the wing to a
structurelly tolerable level.

To assure safety of alrcraft against flutter in the future, the young
aeronautical engineers must be made femillar with aerocelastic problems
now, 80 as to enaeble them to take the correct safeguards while the air-
craft is being designed. Formerly, ailrplanes were generally designed
or even built without regerd to flutter hazerds, and trying to find a
remedy proved then a to0 long and expensive undertaking. The flight
performances often deteriorated so much that the particular type hed to
be withdrewn from the competition. A subsequent elevator mass balance,
for exemple, cost 10 percent of the pay load and more on balance welght,
aside from the greater air resistance of the exbernally mounted balance

welghts.

As we enter the higher speed ranges, aeroelastlic problems must
receive particular attention. Emplrical date and design rules, which
ere satisfactory or still acceptable for conventional ailrecraft, can no
longer be relied upon, the physical process itself must be studied and
mastered. '

Translated by J. Vanier
Nationsl Advisory Committee -
for Aeronautics
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TABLE I.- FLUTTER STATISTICS

Wing unlt Horizontal taill Vertical tail
surfaces surfaces
Probable causes of flutter
al bje a b c a b c Z::
Rear balance of control
surface 13|28}8 1] 121 - 17| 1 |81
Nelghboring frequencies -~ T|=- - 121 - - 1 - (20
Auxiliexry control surfaces| --| bf- - | k31 7 - 1183|715
Landing flaps -] 2= -} -] - - j=-=1-12
Tnexplained -1 11 - 1] - -l ==-1<123

. ——
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TABLE IT.- MAXIMUM VALUES OF OBSERVED REDUCED FREQUENCY

1 © @3
Wing unit (2.4) 1.29 1.1k
Horizontal tall surface 1.1 0.55 0.51
Vertical tail surface 0.k 0.40 0.38
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